Developmental roles of p73 in Cajal-Retzius cells and cortical patterning.

نویسندگان

  • Gundela Meyer
  • Alfredo Cabrera Socorro
  • Carlos Gustavo Perez Garcia
  • Luis Martinez Millan
  • Nancy Walker
  • Daniel Caput
چکیده

To examine the role of the p53 homolog p73 in brain development, we studied p73-/-, p73+/-, E2F1-/-, and reeler mutant mice. p73 in developing brain is expressed in Cajal-Retzius (CR) cells, the cortical hem, and the choroid plexus. p73-expressing CR cells are lost in p73-/- embryos, although Reelin is faintly expressed in the marginal zone. Ectopic neurons in the p73-/- preplate and cortical hem at embryonic day 12 implicate p73 in the early developmental program of the cortex; however, preplate partition and early cortical plate formation are not disturbed. Postnatal p73-/- mice show a mild hypoplasia of the rostral cortex and a severely disrupted architecture of the posterior telencephalon. In the developing p73-/- hippocampus, the most striking abnormality is the absence of the hippocampal fissure, suggesting a role of p73 in cortical folding. p73+/- mice have a less severe cortical phenotype; they display a dorsal shift of the entorhinal cortex and a reduced size of occipital and posterior temporal areas, which acquire entorhinal-like features such as Reelin-positive cells in layer II. CR cells appear unaffected by heterozygosity. We relate the malformations of the posterior pole in p73 mutant mice to alterations of p73 expression in the cortical hem and suggest that p73 forms part of an early signaling network that controls neocortical and archicortical regionalization. In mice deficient for the transcription factor E2F1, a main activator of the TAp73 (transactivating p73) isoform, we find a defect of the caudal cortical architecture resembling the p73+/- phenotype along with reduced TAp73 protein levels and propose that an E2F1-TAp73 dependent pathway is involved in cortical patterning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

p73 and Reelin in Cajal-Retzius cells of the developing human hippocampal formation.

In the fetal human hippocampus, Cajal-Retzius (CR) cells coexpress p73, a p53-family member involved in cell survival and apoptosis, and the glycoprotein reelin, crucial for radial migration. We distinguish two populations of putative CR cells. (1). p73/reelin expressing cells appear around 10 gestational weeks (GW) at the cortico-choroid border in the temporal horn of the lateral ventricle (th...

متن کامل

Expression of p73 and Reelin in the developing human cortex.

Cajal-Retzius (CR) cells of the developing neocortex secrete Reelin (Reln), a glycoprotein involved in neuronal migration. CR cells selectively express p73, a p53 family member implicated in cell survival and apoptosis. Immunocytochemistry in prenatal human telencephalon reveals a complex sequence of migration waves of p73- and Reln-immunoreactive (IR) neurons into the cortical marginal zone (M...

متن کامل

Cajal-Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdays suggest a pallial origin.

Cajal-Retzius cells are reelin-secreting neurons found in the marginal zone of the mammalian cortex during development. Recently, it has been proposed that Cajal-Retzius cells may be generated both early and late in corticogenesis, and may migrate into the cortex from proliferative zones in the subpallium (lateral ganglionic eminence and medial ganglionic eminence) or cortical hem. In the prese...

متن کامل

Cajal, Retzius, and Cajal–Retzius cells

The marginal zone (MZ) of the prenatal cerebral cortex plays a crucial role in cellular migration and laminar patterning in the developing neocortex and its equivalent in the adult brain - layer I, participates in cortical circuitry integration within the adult neocortex. The MZ/layer I, which has also been called the plexiform layer and cell-poor zone of Meynert, among others, is home to sever...

متن کامل

Novel GABAergic circuits mediating excitation/inhibition of Cajal-Retzius cells in the developing hippocampus.

Cajal-Retzius cells are a class of neurons believed to play critical roles during cortical development. However, their network computational functions remain poorly understood. Although work in the neocortex and hippocampus has shown that Cajal-Retzius cells receive predominantly, if not exclusively, spontaneous GABA(A) receptor-mediated input, the cellular sources originating these events rema...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 24 44  شماره 

صفحات  -

تاریخ انتشار 2004